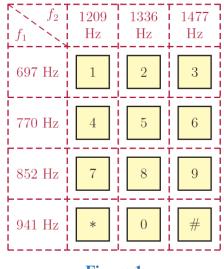


CSx25: Digital Signal Processing NCS224: Signals and Systems

Dual-Tone Multi-Frequency (DTMF) Decoder


In this project, the concept of *dual-tone multi-frequency* (*DTMF*) signaling will be explored. As the name implies, DTMF signals are mixtures of two sinusoids at distinct frequencies. They are used in communications over analog telephone lines.

A particular version of DTMF signaling is utilized in dialing a number with push-button telephone handsets, a scheme known as touch-tone dialing. When the caller dials a number, the DTMF generator produces a dual-tone signal for each digit dialed.

The synthesized signal is in the form

$$x(t) = \sin(2\pi f_1 t) + \sin(2\pi f_2 t), \qquad 0 \le t \le T_{digit}$$

Frequency assignments for the digits on a telephone keypad are shown in Fig. 1.

The goal of this project is to develop a DTMF synthesizer function using MATLAB.

a. For exploratory data analysis, **write** a MATLAB script to accomplish the following:

Express the signal $x(t) = \sin(2\pi f_1 t) + \sin(2\pi f_2 t)$ through the use of a MATLAB anonymous function with $f_1 = 852$ Hz and $f_2 = 1477$ Hz.

Compute the signal in the time interval $0 \le t \le 0.2$ with a time increment of $\Delta t = 1/8000$ s.

Play back the resulting sound *x*(*t*) using the **sound** function of MATLAB.

If the signal was computed properly, you should hear a clean short tone.

Graph the resulting signal x(t) using the plot function.

Repeat the same experiment with different frequencies and different time increments based on Fig. 1. You should hear different short tones.

b. Develop a function named ss_dtmf1 to produce the signal for one digit. The syntax of the function should be

$$x = ss_dtmf1(n, t)$$

The first argument "n" is the digit for which the DTMF signal is to be generated.

Let values n = 0 through n = 9 represent the corresponding keys on the keypad.

Map the remaining two keys "*" and "#" to values n = 10 and n = 11 respectively.

Finally, the value n = 12 should represent a pause, that is, a <u>silent period</u> ($f_1 = 0, f_2 = 0$).

The vector "t" contains the time instants at which the DTMF signal x(t) is evaluated and returned in vector "x".

c. **Develop** a function named ss_dtmf with the syntax

x = ss_dtmf(number, delta, nd, np)

The arguments for the function **ss_dtmf** are defined as follows:

number: The phone number to be dialed, entered as a vector.

For example, to dial the number 5551212, the vector "number" would be entered as

delta: The time increment Δt to be used in computing the amplitudes of the DTMF signal. nd: Parameter to control the duration of the DTMF signal for each digit.

The duration of each digit should be

$$T_{digit} = n_d \Delta t$$

np: Parameter to control the duration of pause between consecutive digits. The duration of pause should be

$$T_{pause} = n_p \Delta t$$

The function ss_dtmf should use the function ss_dtmf1 to produce the signals for each digit (and the pauses between digits) and append them together to create the signal x(t).

d. Write a script to test the function ss_dtmf with the number 5551212.

Use a time increment of 125 microseconds (delta = 1/8000) corresponding to 8000 values per second. The duration of each digit should be 200 milliseconds (nd = 1600) with 80 millisecond pauses between digits (np = 640).

Play back the resulting signal x(t) using the sound function.

Also, **graph** the resulting signal x(t) using the **plot** function.

e. Write a MATLAB script to accomplish the following tasks: Express the following three signals through the use of MATLAB anonymous functions with $f_1 = 852$ Hz and $f_2 = 1477$ Hz.

$$x_{1}(t) = \sin(2\pi f_{1}t)$$

$$x_{2}(t) = \sin(2\pi f_{2}t)$$

$$x(t) = \sin(2\pi f_{1}t) + \sin(2\pi f_{2}t)$$

Compute each signal for n = 1600 samples with a sampling frequency of $f_s = 8000$. You can compute the time vector (t) using the following MATLAB code:

fs = 8000;

$$t = (0:(n-1)) / fs;$$

Listen to each resulting signal **separately** using the **sound** function of MATLAB. **Graph** the resulting signals $x_1(t)$, $x_2(t)$, x(t) in **one graph** using the **subplot** function.

The Fourier transform of the sine function is

$$\mathcal{F}\{\sin(2\pi f_0 t)\} = \frac{1}{2j} \left[\delta(f - f_0) - \delta(f + f_0)\right]$$

Compute the discrete Fourier transform (DFT) of each signal using the function fft, then **shift** the zero-frequency component to center of spectrum using the function fftshift. **Graph** the **magnitude of the DFT** of each signal in **one graph** using the subplot function. You can compute the frequency vector (f) using the following MATLAB code:

f = (-n/2:n/2-1) * (fs/n);

Report

Deliver a report, show the main function, and discusses your implementation.

MATLAB Useful References

You may need the following MATLAB functions and references.

- plot
- subplot
- sound
- cat
- fft: <u>How to Do FFT in MATLAB</u>
- fftshift
- Plot FFT using MATLAB

Example

How to take FFT in Matlab | FFT Matlab Plot Frequency | FFT Matlab Easy Tutorial - YouTube

Bonus

Develop a GUI-based MATLAB program to model the operation of the DTMF decoder. Your program should include an interactive telephone keypad are shown in Fig. 1.

> GOOD LUCK, Eng. Abdallah El Ghamry Dr. Ahmed Shalaby